Tkanki Zwierzece

Tkanka nabłonkowa, tkanka graniczna, nabłonek – jedna z podstawowych tkanek zwierzęcych. Zawiązki nabłonka pojawiają się już w stadium blastuli, ale może się on różnicować znacznie później z tkanek zarodkowych: ektodermy, endodermy, albo zależnie od grupy systematycznej zwierząt i narządu.

Tkanki nabłonkowe dzieli się ze względu na ich budowę i pełnione funkcje. Wyróżnia się zatem:

* nabłonek wielowarstwowy, charakterystyczny, jako nabłonek okrywający, dla kręgowców, w którym komórki ułożone są w kilku warstwach
o Nabłonek wielowarstwowy przejściowy
* nabłonek jednowarstwowy, typowy jako tkanka okrywająca dla bezkręgowców (poza szczecioszczękimi, złożony z pojedynczej warstwy komórek).

Budowa
A - nabłonek jednowarstwowy walcowaty, B - nabłonek jednowarstwowy walcowaty urzęsiony, C - nabłonek wielowarstwowy płaski, D - nabłonek jednowarstwowy płaski, E - nabłonek przejściowy F - nabłonek wielorzędowy, G - nabłonek sześcienny, H - nabłonek gąbek - choanocyty, I - nabłonek wielorzędowy walcowaty urzęsiony

Tkanka_nablonkowa.png

Komórki tkanki nabłonkowej stanowią główną masę nabłonka, a ilość substancji międzykomórkowej między nimi jest minimalna (w przeciwieństwie do tkanki łącznej). Ściśle przylegają do leżącej poniżej błony podstawnej lub otaczającej substancji pozakomórkowej. Komórki nabłonka połączone są specjalnymi złączami - desmosomami, a czasem granica między nimi (czyli błona komórkowa) całkiem zanika i powstaje tzw. syncycjum (inaczej zespólnia lub syncytium). Komórki przylegają do siebie ściśle dzięki mechanizmom łączącym cytoszkielety sąsiadujących komórek. Połączenia między nimi stanowią: połączenia zamykające, zwierające oraz połączenia typu nexus blue.

Nabłonek pełni przede wszystkim funkcję ochronną, ale w związku z faktem, że jego komórki wytwarzają całą gamę dodatkowych tworów komórkowych, jak mikrokosmki, rzęski, wici, włoski itp., pełni też wiele innych funkcji, między innymi bierze udział we wchłanianiu pokarmu, chroni przed inwazją mikroorganizmów, bierze udział w wymianie gazów i wydalaniu.

Podział nabłonków ze względu na funkcję:

* pokrywający (okrywający i wyściełający) - wyścieła jamy ciała i narządów, np. przewód pokarmowy, wnętrze nosa
* ruchowy - polega na przesuwaniu za pomocą rzęsek niepotrzebnych drobin, które dostają się do wnętrza organizmu ze środowiska zewnętrznego, na przykład z tchawicy
* wydzielniczy - współtworzy gruczoły wydzielnicze, występuje w gruczołach wydzielniczych, wytwarzających hormony, potowych, łojowych, śluzówce jelita, śluzówce jamy gębowej
* transportujący - transportuje różne cząsteczki chemiczne przez warstwę nabłonkową, na przykład jelit, kanalików nerkowych, naczyń włosowatych czy pęcherzyków wewnętrznych
* rozrodczy - powstają z niego gamety, występuje w jajnikach i wyścieła kanaliki nasienne jąder.

Tkanka łączna - jedna z podstawowych tkanek zwierzęcych, jest charakterystyczna dla zwierząt przechodzących dwie fazy gastrulacji i powstaje z mezenchymy, choć niektóre komórki pochodzą z neuroektodermy[1].

tkanka-laczna-galeretowata.jpg

Komórki tkanki łącznej wytwarzają dużą ilość substancji międzykomórkowej, która wypełnia przestrzenie między nimi i składa się z istoty podstawowej oraz włókien. Tkanka łączna ma za zadanie: spajać różne typy innych tkanek, zapewniać podporę narządom i ochraniać wrażliwe części organizmu.
Wygląd tkanki łącznej zależy od obfitości substancji międzykomórkowej.

Tkanka łączna właściwa dzieli się na:

* tkankę łączną zbitą
* tkankę łączną zarodkową
* tkankę łączną tłuszczową
* tkankę łączną galaretowatą
* tkankę łączną siateczkowatą

Tkanka łączna galaretowata zbudowana jest z komórek gwiaździstych (A) oblanych dużą ilością substancji międzykomórkowej (B).

Tkanka łączna oporowa
Tkanka ta występuje głównie u kręgowców. Tkankę łączną oporową dzielimy na tkankę kostną i tkankę chrzęstną. Zapewnia ona podporę organizmu i ochronę mechaniczną.

Tkanka łączna chrzęstna
Nie jest unaczyniona ani unerwiona. Należy do najgęstszych tkanek łącznych i występuje przede wszystkim u kręgowców; u bezkręgowców występuje tylko u niektórych pierścienic morskich, mięczaków i bezczaszkowców. W substancji międzykomórkowej (A) znajdują się zaokrąglone zwykle komórki (chondrocyty) (B);czasem też występują włókna sprężyste lub klejorodne. Wyróżniamy:

tkanka_chrzestna.jpg

* Tkanka chrzęstna włóknista
Charakteryzuje się obecnością większej lub mniejszej ilości włókien (C) (głównie kolagenowych) w substancji międzykomórkowej (A); komórki wydłużone i stosunkowo nieliczne (B) Znajduje się w miejscach przyczepu ścięgien do kości oraz w krążkach międzykręgowych.

* Tkanka chrzęstna szklista
Zawiera włókna kolagenowe ulega mineralizacji. Buduje powierzchnie stawowe i przymostkowe części żeber, a także kości biodrowych. Występuje też w części chrzęstnej nosa, nagłośni i oskrzelach.

* Tkanka chrzęstna sprężysta
Występuje w małżowinie usznej ssaków oraz w chrząstkach krtani i nagłośni. Zawiera liczne włókna elastyczne, nie ulega mineralizacji.

Tkanka kostna.
To jeden z wielu szczególnych rodzajów tkanki łącznej; charakteryzuje się tym, że substancja międzykomórkowa jest przesycona solami wapnia (fosforan, węglan) i tworzy wokół kanałów naczyniowych (A) koncentrycznie ułożone blaszki tworzące większe, walcowate jednostki strukturalne; między blaszkami, w jamkach kostnych (B), rozlokowane są komórki tworzące tkankę kostną: osteocyty, osteoblasty, osteoklasty, komórki osteogenne. Tkankę kostną można podzielić na: grubowłóknistą (włókna kolagenowe nie są uporządkowane, występuje u niższych kręgowców i zarodków wyższych kręgowców) i blaszkowatą (włókna kolagenowe są skierowane w tym samym kierunku, co czyni komórki silniejszymi, występuje u dorosłych wyższych kręgowców).

Tkanka tłuszczowa.
Komórki tej tkanki gromadzą tłuszcz, który może być wykorzystywany przez organizm jako źródło energii potrzebnych do normalnego funkcjonowania. Tkanka ta występuje pod skórą, a także wokół serca i nerek. Jej głównym zadaniem jest zatrzymywanie ciepła w organizmie.

Krew składa się z płynnego osocza, składającego się z:

* wody,
* związków organicznych,
* związków nieorganicznych,
* białek,
* tłuszczy
* witamin,
* soli mineralnych

oraz elementów morfotycznych, które dzielą się na:

* krwinki białe (leukocyty),
* krwinki czerwone (erytrocyty) zawierające czerwony barwnik (hemoglobinę),
* płytki krwi (trombocyty),

Krew występuje w środowisku wewnętrznym każdego organizmu. Erytrocyty zawierają czerwony barwnik, dzięki któremu transportują tlen. Krwinki białe pełnią funkcje obronne organizmu przed mikroorganizmami. Płytki krwi biorą udział w krzepnięciu krwi. Krew transportuje tlen do tkanek oraz odprowadza z nich dwutlenek węgla i inne produkty przemian zachodzących w organizmie. Limfa zawiera wodę i sole mineralne, białka, tłuszcze oraz dużą ilość krwinek białych. Odgrywa ważną rolę w utrzymywaniu płynów w organizmie.

Limfa
To płyn tkankowy spływający do naczyń chłonnych, tworzących układ naczyń limfatycznych. Chłonka rozprowadza po organizmie limfocyty zabierane z węzłów chłonnych. Bierze także udział w transporcie tłuszczów pokarmowych, stąd jej lekko żółtawe zabarwienie.

Tkanka mięśniowa, składa się z włókien mięśniowych, zbudowanych z miocytów (zespołów komórek mięśniowych), posiadających zdolność do aktywnego kurczenia się.

ms.jpg

Rodzaje tkanki mięśniowej:

* tkanka poprzecznie prążkowana szkieletowa
* tkanka poprzecznie prążkowana serca
* tkanka gładka

Wykonanie skurczu następuje dzięki występowaniu w nich miofibryli, czyli włókienek kurczliwych zbudowanych z łańcuchów polipeptydowych. Efektywność ruchu w mięśniach jest możliwa dzięki ścisłemu ułożeniu włókien mięśniowych, pomiędzy którymi nie występuje żadna inna tkanka. Mechanizm działania miofybryli jest aktualnie przedmiotem dyskusji naukowej i istnieją na ten temat dwie rozbieżne teorie. Tkanka mięśniowa nie ma własnej substancji międzykomórkowej, a elementy mięśniowe połączone są ze sobą za pomocą tkanki łącznej wiotkiej. Pomimo obecności w komórkach mięśniowych jądra komórkowego oraz pewnej zdolności do podziału, ubytki w tkance mięśniowej tylko w niewielkim stopniu są uzupełniane w wyniku podziału nieuszkodzonych komórek. Najczęściej zostają one zastąpione tkanką łączną tworzącą w tym miejscu bliznę. Tkanki mięśniowe, poprzecznie prążkowana serca i gładka unerwione są przez układ współczulny i działają niezależnie od woli człowieka. Natomiast mięśnie poprzecznie prążkowane, unerwione somatycznie, kurczą się zgodnie z wolą człowieka.

Tkanka poprzecznie prążkowana szkieletowa
Elementami strukturalnymi, z których zbudowany jest ten typ tkanki, są komórki wielojądrzaste, nazwane włóknami mięśniowymi. Włókno mięśniowe ma więc charakter syncytium, które powstało w wyniku zespolenia wielu komórek. Dlatego też w każdym włóknie występuje od kilkudziesięciu do kilkuset jąder, które są położone na obwodzie komórki, pod błoną sarkoplazmatyczną. Włókna mięśniowe mają kształt walcowaty, długość ich sięga od 1 do 5 cm, niekiedy zaś nawet do kilkunastu centymetrów.

Wnętrze włókna wypełniają prawie całkowicie włókienka kurczliwe (miofibryle). Biegną one równolegle do siebie, wzdłuż długiej osi włókna, najczęściej zebrane w pęczki, odizolowane skąpą ilością sarkoplazmy. Sarkoplazma zawiera czerwony barwnik - mioglobinę oraz znaczne ilości ziaren glikogenu. W komórkach tkanki mięśniowej znajdują się liczne mitochondria, słabo rozwinięty układ Golgiego, zlokalizowany w pobliżu jądra oraz siateczka środplazmatyczna gładka. Siateczka śródplazmatyczna występuje w bezpośrednim sąsiedztwie włókien kurczliwych, tworząc bardzo regularny i skomplikowany układ kanalików podłużnych i poprzecznych. Kanaliki podłużne są elementami sieci sarkoplazmatycznej i noszą nazwę sarkotubul. Sarkotubule rozszerzają się na obu końcach sarkomeru tworząc cysterny, które sąsiadują z poprzecznie leżącymi kanalikami utworzonymi w wyniku wypuklenia się sarkolemmy - są to tzw. kanaliki pośrednie T. Do kanalików T przylegają cysterny sąsiadujących kanalików siateczki śródplazmatycznej tworząc tzw. triady. Za pośrednictwem tego systemu kanalików odbywa się wymiana substancji między miofibrylami a środowiskiem zewnętrznym, przewodzenie bodźców skurczowych oraz transport jonów wapnia, niezbędnych do skurczu włókien mięśniowych.

Włókna mięśniowe dzieli się pod względem morfologicznym i czynnościowym na dwa podstawowe typy:

* włókna typu I - wolnokurczące się (zwane też z ang. slow twitching "ST")
* włókna typu II - szybkokurczące się (fast twitching "FT")

Włókna wolnokurczące zawierają wiele mitochondriów i duże stężenie mioglobiny (stąd zwane są też czerwonymi), co jest istotne, gdyż energię do skurczu czerpią z procesów tlenowych. Charakteryzują się one powolnym narastaniem siły skurczu i dużą wytrzymałością na zmęczenie.

Włókna szybkokurczące się (białe) zawierają mniejsze stężenie mioglobiny, kurczą się szybciej, ale są mniej wytrzymałe. Biorąc pod uwagę główne źródła energii z jakich korzystają, wyróżnia się wśród nich:

* włókna typu IIA - glikolityczno-tlenowe, wykorzystujące energię wytworzoną w procesie glikolizy w cytoplazmie oraz w procesie fosforylacji oksydacyjnej w mitochondriach
* włókna typu IIB - glikolityczne, korzystające głównie z energii wytworzonej podczas glikolizy - liczba mitochondriów jest w nich mniejsza.

Mięśnie człowieka zawierają oba rodzaje włókien, a ich wzajemny stosunek jest różny u różnych ludzi. U sportowców uprawiających dyscypliny siłowe przeważają włókna typu białego. Trening wytrzymałościowy powoduje zwiększenie potencjału tlenowego mięśni przez zwiększenie liczby naczyń kapilarnych w mięśniach.

Budowa włókienek kurczliwych - miofibryli jest bardzo złożona. Nie mają one jednorodnej struktury, lecz składają się z jaśniejszych i ciemniejszych odcinków, leżących na przemian. Jaśniejsze odcinki zbudowane są z substancji pojedynczo załamującej światło - są to tzw. prążki izotropowe I, prążki ciemniejsze izotropowe jak i anizotropowe leżą we wszystkich miofibrylach na długiej osi włókna mięśniowego, wskutek czego powstaje wrażenie poprzecznego prążkowania całego włókna.

Tkanka mięśniowa gładka.
Działa niezależnie od woli i świadomości człowieka. Jest zdolna do ciągłego, lecz bardzo powolnego kurczenia się. Jest elementem budowy naczyń, ścian przewodu pokarmowego, ścian moczowodów, **pęcherza moczowego, cewki moczowej,skóry.

Tkanka mięśnia sercowego
Występuje tylko w mięśniu sercowym i choć przypomina budową mięśnia szkieletowego, to wykorzystuje przede wszystkim procesy tlenowe i dzięki dobremu ukrwieniu jest zdolna do ciągłego wysiłku (okres odpoczynku tej tkanki to okres rozkurczu serca).

serce.jpg

Funkcje tkanki mięśniowej

* wykonywanie wszystkich ruchów,
* lokomocja,
* realizacja podstawowych funkcji życiowych (oddychanie, trawienie, wydalanie),
* utrzymanie postawy ciała,
* wytwarzanie ciepła,
* kształtowanie sylwetki,
* ochrona dla tkanek znajdujących się pod nią,
* ochrona dla naczyń i nerwów.

Tkanka nerwowa jest utworzona przez neurony (komórki nerwowe) i komórki glejowe, tworzy układ nerwowy. Tkanka nerwowa jest szczególnie wrażliwa na brak tlenu. Odbiera, przekazuje i reaguje na impulsy środowiska, jak np. dotyk, temperatura czy światło. Przewodzi impulsy z neuronu do efektorów, od receptorów, przetwarza impulsy w adekwatne odpowiedzi, przewodzi impulsy z neuronu do innego neuronu, wytwarza substancje przekaźnikowe. Komórki nerwowe umożliwiają organizmowi normalne funkcjonowanie w danym środowisku, adekwatną odpowiedź w zależności od sytuacji w środowisku zarówno wewnętrznym jak i zewnętrznym. Neurony stale rejestrują się, analizują informacje o stanie wewnętrznym organizmu jak i zewnętrznym stanie otoczenia, przez co przygotowują organizm do adekwatnej reakcji. Do neuronów należy również koordynacja aktywności intelektualnej, świadomości, podświadomości, aktywności ruchowej czy też czynności gruczołów dokrewnych.
Tkanka nerwowa ma bardzo słabe możliwości regeneracyjne.

komorka_nerwowa.jpg

Narządami zbudowanymi z tkanki nerwowej są:

* ośrodkowy układ nerwowy
o mózg (mózgowie)
o rdzeń kręgowy
* obwodowy układ nerwowy

W komórce nerwowej (neuronie)dostrzegamy:

* ciało komórki (perikarion) z jądrem komórkowym i neurofibryllami
* liczne dendryty
* akson (= neuryt)

Złożona jest z licznych komórek nerwowych - neuronów. Składają się one z ciała komórki zawierającego jądro. Od tego ciała odchodzą krótkie wypustki zwane dendrytami oraz najczęściej jedna, długa i rozgałęziona na końcu wypustka - neuryt. Mogą go otaczać osłonki mielinowe. Dendryty odbierają bodźce i przekazują je do ciała komórki nerwowej, a stąd przez neuryt informacja trafia do następnej komórki nerwowej. Dzięki dendrytom i neurytom komórki nerwowe mogą spełniać swoje funkcje, czyli odbierać i przekazywać bodźce ze środowiska zewnętrznego i wewnętrznego do centralnego układu nerwowego - mózgu i rdzenia kręgowego. Centralny układ nerwowy, od którego odchodzą liczne włókna nerwowe pełni nadrzędną funkcję w stosunku do innych układów i całego organizmu. Układ nerwowy scala, kontroluje wszystkie czynności życiowe i funkcjonowanie żywego organizmu.

O ile nie zaznaczono inaczej, treść tej strony objęta jest licencją Creative Commons Attribution-ShareAlike 3.0 License